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ABSTRACT: Likelihood ratios are necessary to properly interpret mixed stain DNA evidence. They can flexibly consider alternate hypotheses
and can account for population substructure. The likelihood ratio should be seen as an estimate and not a fixed value, because the calculations are
functions of allelic frequency estimates that were estimated from a small portion of the population. Current methods do not account for uncertainty
in the likelihood ratio estimates and are therefore an incomplete picture of the strength of the evidence. We propose the use of a confidence interval
to report the consequent variation of likelihood ratios. The confidence interval is calculated using the standard forensic likelihood ratio formulae and
a variance estimate derived using the Taylor expansion. The formula is explained, and a computer program has been made available. Numeric work
shows that the evidential strength of DNA profiles decreases as the variation among populations increases.
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With techniques for obtaining and typing DNA evidence becom-
ing more sensitive, the need for interpreting mixed stains is grow-
ing. Unfortunately, analysis of DNA mixtures is both genetically
and statistically complex (1), and care is needed not to present pre-
judicial analyses. Several lines of research have been explored to
simplify the mixture analysis process. Peak areas in chromatograms
have been considered to help resolve mixtures (2,3), and denaturing
high-performance liquid chromatography has been used to resolve
mitochondrial mixtures (4). The majority of mixture evidence
comes from sexual assault cases, and much work has been devoted
to analysis of the Y chromosome to identify male perpetrators (5).

While much progress has been made in typing methods, the
development of statistical methods has been slower. Weir et al. (6)
gave a general formulation under the assumption of allelic indepen-
dence, and this was extended by Curran et al. (7) to allow for pop-
ulation structure. The case of mixed race populations has been
examined (8), and Lauritzen and Mortera (9) provided a useful
bound for the number of unknown contributors to a mixture.

One statistical topic that has not received much attention is that of
the effects of sampling variation on the numbers presented for DNA
mixtures. For single-contributor stains, methods to describe the
effects of sampling variation have been reviewed by Curran et al.
(10) and by Gill et al. (11). This paper proposes the reporting of like-
lihood ratios for DNA mixtures and presents an analytical method
that can be, and has been, incorporated into a software package.

The Confidence Interval

It has become accepted practice to attach numerical weights to
DNA evidence to show ‘‘whether the patterns are as common as

pictures with two eyes, or as unique as the Mona Lisa’’ (US v Yee,
134 FRD 161, 181 [ND Ohio, 1991]). Probability assessments should
accurately inform the court of the strength of the evidence. However,
a simple quantification of probability does not tell the whole story.
Calculations for mixtures, as for single-contributor stains, rest on the
frequencies of alleles at the typed markers yet these frequencies are
not known. Instead, they are estimated using a sample from the popu-
lation. Because these samples represent only a small portion of the
total population, there is uncertainty about the true frequencies and
therefore uncertainty about the resulting calculations. If the forensic
scientist wishes to report on the evidence accurately and thoroughly,
the level of uncertainty should in some way be reported. Some inves-
tigators (12–14) advocate the use of Bayesian methods that lead to
probability distributions of mixture quantities, and there is merit to
that approach. However, deciding on an appropriate prior in the con-
text of an adversarial court setting may prove difficult.

Here, we present the classical approach of confidence intervals,
in part because they avoid the need for controversial priors, and in
part because they are familiar in the context of public opinion sur-
veys (‘‘47% of those polled support the President on this issue, plus
or minus 3 percentage points’’). It is understood that the ‘‘plus or
minus’’ results from the estimated proportion depending on the par-
ticular set of people sampled. We do not mean to imply that foren-
sic scientists should adopt statistical procedures only because they
can be explained easily, but we point out that the widely used con-
fidence interval is a statistical tool with a rigorous theoretical basis.

Technically, a confidence interval refers to the range in which a
specified central proportion (say 95%) of future estimates would
fall if further samples were taken from the population and each
one used to provide an estimate. Presenting a confidence interval is
the appropriate response to the question ‘‘How large a sample is
necessary to provide an estimate?’’ The forensic scientist can
explain that the sample size used resulted in a certain width confi-
dence interval. Smaller samples would widen the interval, and
larger samples would make it narrower. It is worth noting that the
common phrase ‘‘plus or minus 3 percentage points’’ generally
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reflects the uncertainty in the proportion of a population responding
to one answer to a single question when 1000 or so people are
questioned. For DNA profiles to match, there is a question (‘‘is
there a match?’’) that must be answered correctly for each allele in
the evidence profile, and the resulting confidence interval is more
likely to be ‘‘plus or minus a factor of 3.’’

The definition of a confidence interval leads naturally to the
technique of bootstrapping, whereby a new sample is created by re-
sampling the sample at hand (15). If 1000 new samples are created
in this way, and the 1000 new estimates are put in rank order, then
a 95% confidence interval is bounded by the 26th and the 975th
estimates. While bootstrapping makes few distributional assump-
tions, other than the original sample being appropriately random,
bootstrapping from a single population cannot address the evolu-
tionary sampling implicit in forensic calculations that employ the
‘‘theta correction.’’ The approach we employ for both single- and
multiple-contributor stains supposes that allele frequencies are not
necessarily available from the most relevant population or subpopu-
lation, but that the available frequencies can be used, along with
the population structure parameter h, in a way that recognizes the
variation among populations caused by evolutionary processes.

We offer, therefore, an algebraic treatment that employs sample
allele frequencies and a specified value of h. Access to the original
database is not needed, although a computer program is an advan-
tage. Because it incorporates both ‘‘statistical’’ and ‘‘genetic’’ sam-
pling (16), the intervals we present are wider than those that would
be obtained by bootstrapping. Software has been made available
and is discussed in the Appendix.

The Likelihood Ratio

The likelihood ratio is particularly well suited for the statistical
analysis of forensic DNA evidence because, as in a trial, two alter-
native hypotheses are compared. In a trial, a jury weighs the prose-
cution hypothesis and the defense hypothesis and determines which
is more likely to explain the evidence. The likelihood ratio method
compares the probability of finding the DNA evidence given the
prosecution hypothesis (Pr(E|Hp)) to the probability of finding the
evidence assuming the defense hypothesis (Pr(E|Hd)). The compari-
son is expressed in the form of the ratio LR:

LR ¼ PrðEvidencejHpÞ
PrðEvidencejHdÞ

The likelihood ratio method illustrates what Evett and Weir (17,
p. 29) call the ‘‘First principle of evidence interpretation.’’ This
principle states, ‘‘To evaluate the uncertainty of any given proposi-
tion, it is necessary to consider at least one alternative proposition.’’
Not only is the method well suited to the situation of DNA mix-
tures, but at times, it is necessary. ‘‘There is no alternative [to the
likelihood ratio] when the evidence is less than certain under the
proposition Hp’’ (7, p. 992).

The likelihood method requires both hypotheses and evidence. In
the case of mixed DNA profiles, the evidence is the profile of the
mixture stain. The hypotheses consist of alternative propositions H
concerning the contributors of the stain. The probability of the evi-
dence, given an hypothesis, can be further factored into the proba-
bilities of the evidence at specific loci l: Pr(El|H).

Under the assumption of independent loci, the overall likelihood
ratio is the product of the likelihood ratios for each locus and this
leads us to the heart of our approach. The logarithm of the likeli-
hood ratio is the sum of the logarithms of the likelihood ratios for
each locus, and if there are several loci (as there are with the

13-locus CODIS set), this logarithm can be assumed to be normally
distributed and standard statistical theory can be invoked to calcu-
late a confidence interval. In particular, a 95% confidence interval
for the logarithm of the likelihood ratio is calculated as

CI ¼ lnðcLRÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½lnðcLRÞ�

q
where Var indicates the variance of the calculated log-likelihood
ratio lnðcLRÞ. If we take anti-logs, this provides a confidence inter-
val for the likelihood ratio of (cLR� C; cLR� C) where the
quantity C is the anti-log (i.e., e to the power of

�za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½lnðcLRÞ�

q
). In the Appendix, we give a general expres-

sion for the variance of the calculated likelihood ratio that applies
to both single-contributor profiles and mixed profiles.

Likelihood Ratio for Mixtures

Curran et al. (7) gave an expression for the likelihood ratio for
DNA mixtures that allowed for population structure effects. Their
formulation rests on the concept that every (sub)population has
allele frequencies that can differ from other (sub)populations but
that the collection of all sets of frequencies follows a known statis-
tical distribution. If it can be assumed that the populations have
reached a state of evolutionary equilibrium, then this distribution is
the Dirichlet. A consequence of this distribution is that every
observed allele, whether in the evidence profile or in samples taken
from individuals, affects the probabilities of allelic types for future
observations. In particular, if a set of n alleles has been observed,
and if ni of them are of type Ai, then the probability that the next
allele is also of type Ai is

PrðAijni of type AiÞ ¼
nihþ ð1� hÞpi

nhþ ð1� hÞ

where h is the population structure parameter, typically assumed to
be in the range 0.01–0.05.

This expression leads to probabilities for the set of observed
alleles under either hypothesis about the evidence profile. The num-
ber of alleles will be different in the two hypotheses because alleles
seen in a suspect who is not excluded from the evidence may be
counted once by the prosecution but twice by the defense who
claim the suspect is not a contributor to the evidence. The complete
expression for the likelihood ratio requires identification of all
alleles from people who have been typed, whether or not they are
hypothesized to be contributors to the mixture as well as all alleles
in the mixture. The numbers of contributors also need to be speci-
fied. The equation is shown in the Appendix.

Numerical Study

The Caucasian database for the CODIS loci published by Bud-
owle et al. (18) was used to illustrate the size of confidence inter-
vals for both single-contributor and mixed stains. To indicate the
likely range of sizes, two situations were considered: those with the
most common alleles at all 13 loci and those with the rarest alleles.
Confidence intervals for a two-allele single-contributor profile are
shown in Table 1, for which the two hypotheses are:

Hp: The suspect contributed the evidence.
Hd: An unknown person contributed the evidence.

The suspect is assumed to have the same profile as the evidence.
‘‘Common’’ refers to the evidence stain with the most common
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alleles, and ‘‘Rare’’ refers to the evidence stain with the least com-
mon alleles. cLR, cLB, and cUB are the estimates of the likelihood

ratio, lower bound, and upper bound. The quantity za
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½lnðcLRÞ�

q
is a measure of interval width.

Intervals for a mixed stain, where there are three alleles at every
locus in the evidence profile are shown in Table 2. A suspect has
two of the alleles at each locus. Hypotheses for ‘‘Case 1’’ are:

Hp: The suspect and the victim contributed the evidence.
Hd: An unknown and the victim contributed the evidence.

Hypotheses for ‘‘Case 2’’ are:

Hp: The suspect and an unknown contributed the evidence.
Hd: Two unknowns contributed the evidence.

With the development of a computer program for the calculation of
the likelihood and its confidence interval, it is straightforward to ana-
lyze the effects of h on these quantities. Values of cLR for different
values of h are shown in Fig. 1 for two-contributor profiles contain-
ing the three most common alleles at each of the 13 CODIS loci and
in Fig. 2 for one two-contributor profile containing the three least
common alleles. Evidently, the effects of h can be substantial.

As with all classical confidence intervals, the sample size affects
the width of the interval. Under the Dirichlet model,
Varðepi;lÞ ¼ epi;lð1� epi;lÞðhþ ½ð1� hÞ=2nl�Þ. The (1 ) h) ⁄2n goes
to zero as the sample size goes to infinity. However, the h cannot
be eliminated by additional sampling within the population. This
reflects the between-population variation.

Discussion

An explicit formula has been derived to allow the evaluation of
confidence intervals for the likelihood ratios needed to interpret
forensic DNA profiles. These intervals can be calculated with the
computer program DNAMIX v.3, and they require details of the
profile along with the frequencies of all alleles in the profile. The
method applies to both single- and multiple-contributor profiles and
allows for the incorporation of a population structure parameter h.
It is necessary to specify two alternative hypotheses for the contrib-
utors to the profile.

The method presented assumes profiles with several loci, such as
the 13-locus CODIS set, in order for normal-distribution theory to be
appropriate. The confidence intervals are symmetric on a

TABLE 1—Ranges of the CI and bounds for a stain with a single
contributor.

Stain CI (%) cLR cLB cUB expfza=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½lnðcLRÞ�

q
g

Common 95.0 1.13E11 1.97E10 6.52E11 1.76
99.0 1.13E11 1.14E10 1.13E12 2.30
99.9 1.13E11 6.01E09 2.14E12 2.94

Rare 95.0 1.41E35 7.84E32 2.54E37 5.19
99.0 1.41E35 1.53E32 1.30E38 6.82
99.9 1.41E35 2.31E31 8.62E38 8.72

h = 0.015.
CI, confidence interval.

TABLE 2—Ranges of the CI and bounds for stains with two contributors.

Stain CI (%) cLR cLB cUB expfza=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½lnðcLRÞ�

q
g

Case 1
Common 95.0 3.70E08 7.15E07 1.92E09 1.65

99.0 3.70E08 4.26E07 3.21E09 2.16
99.9 3.70E08 2.34E07 5.85E09 2.76

Rare 95.0 5.86E27 1.39E26 2.48E28 3.74
99.0 5.86E27 4.27E25 8.03E29 4.92
99.9 5.86E27 1.09E25 3.15E30 6.29

Case 2
Common 95.0 7.76E02 1.59E02 3.78E03 1.59

99.0 7.76E02 9.68E01 6.21E03 2.08
99.9 7.76E02 5.44E01 1.11E04 2.66

Rare 95.0 3.20E22 1.13E21 9.06E23 3.34
99.0 3.20E22 2.96E20 2.59E24 4.39
99.9 3.20E22 1.17E20 8.76E24 5.61

h = 0.015.
CI, confidence interval.

FIG. 1—Log-likelihood ratio and 95% bounds, versus theta: most common alleles.
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logarithmic scale, so on the original likelihood ration scale, they pro-
vide intervals of the form (cLR� C, cLR� C). Numerical work has

shown that the factor C ¼ exp z a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½lnðcLRÞ�

q� �
can be of the

order of 100 or even 1000 for single-contributor stains, but it is prob-
ably <100 for multiple-contributor stains.

The population structure parameter h describes the variation in
allele frequencies over populations and allows the use of population-
wide frequencies to apply to subpopulations or even frequencies
from one population to apply to another population providing h is
sufficiently large. The underlying theory assumes that all populations
have the same expected allele frequencies, but that the variance in
frequencies among populations is proportional to h. Numerical work
has shown that, not only do likelihood ratios decrease as h increases,
but the confidence intervals increase in width with h. In other words,
the numerical value of the evidential strength of DNA profiles
decreases as the variation among (sub)populations increases.

Conflict of interest: The authors have no relevant conflicts of
interest to declare.

Acknowledgments

This work was stimulated by conversations with Dr. Peta
Stringer of the Victoria Forensic Science Service, Australia.
Programming assistance was provided by Oliver Serang.

References

1. Torres Y, Flores I, Prieto V, Lopez-Soto M, Farfan MJ, Carracedo A,
et al. DNA mixtures in forensic casework: a 4-year retrospective study.
Forensic Sci Int 2003;134(2–3):180–6.

2. Clayton TM, Whitaker JP, Sparkes R, Gill P. Analysis and interpretation
of mixed forensic stains using DNA STR profiling. Forensic Sci Int
1998;91(1):55–70.

3. Gill P, Brenner CH, Buckleton JS, Carracedo A, Krawczak M, Mayr
WM, et al. DNA commission of the International Society of Forensic
Genetics: recommendations on the interpretation of mixtures. Forensic
Sci Int 2006;160(2–3):90–101.

4. LaBerge GS, Shelton RJ, Danielson PB. Forensic utility of mitochon-
drial DNA analysis based on denaturing high-performance liquid chro-
matography. Croat Med J 2003;44(3):281–8.

5. Cerri N, Ricci U, Sani I, Verzeletti A, De Ferrari F. Mixed stains from
sexual assault cases: autosomal or Y-chromosome short tandem repeats?
Croat Med J 2003;44(3):289–92.

6. Weir BS, Triggs CM, Starling L, Stowell LI, Walsh KA, Buckleton J.
Interpreting DNA mixtures. J Forensic Sci 1997;42(2):213–22.

7. Curran JM, Triggs CM, Buckleton J, Weir BS. Interpreting DNA mix-
tures in structured populations. J Forensic Sci 1999;44(5):987–95.

8. Triggs C, Harbison SA, Buckleton J. The calculation of DNA match
probabilities in mixed race populations. Sci Justice 2000;40(1):33–8.

9. Lauritzen SL, Mortera J. Bounding the number of contributors to mixed
DNA stains. Forensic Sci Int 2002;130(2–3):125–6.

10. Curran JM, Buckleton JS, Triggs CM, Weir BS. Assessing uncertainty in
DNA evidence caused by sampling effects. Sci Justice 2002;42:29–37.

11. Gill P, Foreman L, Buckleton JS, Triggs CM, Allen H. A comparison of
adjustment methods to test the robustness of an STR DNA database
comprised of 24 European populations. Forensic Sci Int 2003;131(2–
3):184–96.

12. Balding DJ, Nichols RA. DNA profile match probability calculation:
how to allow for population stratification, relatedness, database selection
and single bands. Forensic Sci Int 1994;64(2–3):125–40.

13. Balding DJ. Estimating products in forensic identification. J Am Stat
Assoc 1995;90:839–44.

14. Curran JM. An introduction to Bayesian credible intervals for sampling
error in DNA profiles. Law, Probab Risk 2005;4:115–26.

15. Hollander M, Wolfe D. Nonparametric statistical methods. New York,
NY: Wiley-Interscience, 1999.

16. Weir BS. Genetic data analysis II. Sunderland, MA: Sinauer, 1996.
17. Evett IW, Weir BS. Interpreting DNA evidence: statistical genetics for

forensic science. Sunderland, MA: Sinauer, 1998.
18. Budowle B, Moretti TR, Baumstark AL, Defenbaugh DA, Keys KM.

Population data on the thirteen CODIS core short tandem repeat loci in
African Americans, U.S. Caucasians, Hispanics, Bahamians, Jamaicans,
and Trinidadians. J Forensic Sci 1999;44(6):1277–86.

Additional information and reprint requests:
Bruce S. Weir, Ph.D.
University of Washington
Department of Biostatistics
Box 357232
1705 NE Pacific Street
Seattle, WA 98198-7232
E-mail: bsweir@u.washington.edu

FIG. 2—Log-likelihood ratio and 95% bounds, versus theta: least common alleles.

BEECHAM AND WEIR • CONFIDENCE INTERVAL OF MIXED STAIN LR S169



Appendix

Derivation of the Variance of the Confidence Interval

The most difficult part of calculating the confidence interval for
a likelihood ratio is obtaining the variance of its logarithm. As we
are assuming independent loci:cLR ¼

Y
l

cLRl

lnðcLRÞ ¼
X

l

lnðcLRlÞ

Var½lnðcLRÞ� ¼
X

l

Var½lnðcLRlÞ�

where LR is the likelihood ratio, and the loci are indexed by l. The
Taylor expansion (d-method) can be used to calculate an approxi-
mation of the variance for any function g of m variables:

Var½gðxÞ� ¼
Xm

i¼1

@g

@xi

� �2

VarðxiÞ

þ
Xm

i¼1

Xm

j 6¼i;j¼1

@g

@xi

� �
@g

@xj

� �
Covðxi; xjÞ

The Taylor expansion can be applied to the logarithm of the
likelihood ratio for the lth locus, with m variables being the m dif-
ferent allele frequencies (pl,i) at the lth locus:

Var½lnðcLRlÞ� ¼
Xm

i¼1

@ lnðcLRlÞ
@epl;i

 !2

Varðepl;iÞ

þ
Xm

i¼1

Xm

j 6¼i;j¼1

@ lnðcLRlÞ
@epl;i

 !
@ lnðcLRlÞ
@epl;j

 !
Covðepl;i;epl;jÞ

The partial derivatives are

@ lnðcLRlÞ
@epl;i

¼ @fln½PrðEljHpÞ� � ln½PrðEljHdÞ�g
@epl;i

¼ 1
PrðEljHpÞ

@ PrðEljHpÞ
@epl;i

� 1
PrðEljHdÞ

@ PrðEljHdÞ
@epl;i

We are using the same notation for the probabilities Pr (El|H)
and their estimates that employ sample allele frequencies. For mix-
tures, Pr (El|H) is given by:

PrðEljHÞ ¼
Xr

r1¼0

Xr�r1

r2¼0

:::
Xr�r1:::�rc�2

rc�1¼0

ð2xÞ!2hTþhVQc
h¼1 uh!

�
Qc

h¼1

Qthþuhþvh�1
j¼0 ½ð1� hÞepl;h þ jh�Q2xþ2nTþ2nV�1

j¼0 ½ð1� hÞ þ jh�

This equation is from equation 10 of Curran et al. (A1) and is
fully explained there. The equation can be written in such a way
that separates the terms containing the allele frequencies from
those that do not. If K is the number of possible genotype combi-
nations supported by the hypothesis and Ak the portion of the kth
combination term that is invariant with respect to the allele
frequencies:

PrðEljHÞ ¼
XK

k¼1

Ak

Yc

h¼1

Ytþuhþvh�1

j¼0

½ð1� hÞpl;j þ jh�

The required derivatives are

@ PrðEljHÞ
@epl;i

¼ ð1� hÞ
XK

k¼1

Ak

Yc

h¼1;h6¼i

Ytþuhþvh�1

j¼0

½ð1� hÞepl;h þ jh�
 !

�
Xtþuhþvh�1

q¼0

Ytþuhþvh�1

j¼0;j 6¼q

½ð1� hÞepl;i þ jh�
 !

where epl;i is the sample frequency of the ith allele at the lth locus.
It is the expressions for the variances of allele frequencies that

have proved problematic. Unlike the National Research Council
1996 report (A2), we consider that the variances are affected by
the population structure parameter h and under the same Dirichlet
model that led to the result of Curran et al. (A1):

Varðepl;iÞ ¼ pl;ið1� pl;iÞ½ð2nl � 1Þhþ 1�=2nl

Covðepl;i;epl;jÞ ¼ �pl;ipl;j½ð2nl � 1Þhþ 1�=2nl
ð1Þ

for samples of nl individuals at locus l. Sample allele frequencies
are substituted to provide estimates. We now explore the derivation
of these expressions that are designed to accommodate variation in
allele frequencies that is because of the evolutionary process as
well as to the choice of sampled individuals.

A complete discussion makes a distinction between popula-
tions and subpopulations. Define indicator variables xuvw for the
wth allele drawn from the vth subpopulation of the uth popula-
tion. These variables are equal to 1 if the allele is a particular
type (i, say) and 0 otherwise. We suppose that only one popula-
tion has been sampled but that the number of subpopulations is
unknown. Alleles have relationships according to whether they
are in the same subpopulation and in the same population. Drop-
ping the locus and allele subscripts l and i, the expectations are
(A3)

eðxuvwÞ ¼ eðx2
uvwÞ ¼ p

eðxuvwxuvw0 Þ ¼ p2 þ pð1� pÞh; different alleles w 6¼ w0

eðxuvwxuv0w0 Þ ¼ p2 þ pð1� pÞ/; different subpopulations v 6¼ v0

eðxuvwxu0v0w0 Þ ¼ p2; different populations u 6¼ u0

Suppose that nv alleles have been taken from the vth of r sub-
population so that

P
v nv ¼ n. Then, the sample frequency for pop-

ulation u is

epu ¼
1
n

Xr

v¼1

nvepv ¼
1
n

Xr

v¼1

Xnv

w¼1

xuvw

and

eð~puÞ ¼ p

eð~p2
uÞ

¼ 1
n2

eð
X

v

X
w

x2
uvw þ

X
v

X
w 6¼w0

xuvwxuvw0 þ
X
v6¼v0

X
w

X
w0

xuvwxuv0w0 Þ

¼ 1
n2

npþ
X

nvðnv � 1Þ½p2 þ pð1� pÞh�
(

þ
X
v 6¼v0

nvnv0 ½p2 þ pð1� pÞ/�
)

Varð~puÞ ¼ pð1� pÞ /þ
P

v n2
v

n2
ðh� /Þ þ 1

n
ð1� hÞ

� �
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Bootstrapping would accommodate the variation among subpop-
ulations (h), but it would not address the variation among popula-
tions (/).

Noting that / £ h (alleles are more related within than among
subpopulations), a bound on the variance that does not depend on
the number of subpopulations or how many alleles are sampled
from each is found by setting / = h:

Varð~puÞ � pð1� pÞ hþ 1
n
ð1� hÞ

� �
which is the value we have used in this paper. It holds exactly if
there are no subpopulations within the sampled population
(r = 1, n1 = n). The National Research Council (A2) used the bino-
mial variances

Varð~puÞ ¼
pð1� pÞ

n

which is appropriate if population structure is ignored (/ = h = 0)
or if every individual is in a different subpopulation
(r = n; nv = 1, v = 1, 2, ..., r) and / = 0.

We are concerned about the case when / „ 0. One scenario
would be when the single-sampled population is ‘‘Caucasians’’ and
there is unknown substructure. The value of / could be estimated
by comparing Caucasians to other ethnic groups. Estimation of h
can be approximated by comparing Caucasians from different
European countries. Note that, we expect h to be greater than /. If
we take allele frequencies from different European countries and
estimate ‘‘FST’’ by any standard method, we are actually estimating
(h ) /) ⁄ (1 ) /), whereas if we take frequencies from different eth-
nic groups, we are actually estimating / (assuming that the ances-
tral human coancestry is zero) and the first estimate is smaller than
the second.

When a sample is taken from a single population and there is no
reason to suppose subpopulations, there is no distinction between h

and / and r = 1. Protection against having the wrong population
(wrong allele frequencies) is provided using Varð~puÞ ¼
pð1� pÞ½hþ ð1� hÞ=n�. When a sample is taken from a single
population but there is reason to suppose subpopulations, there is a
distinction between h and / and r > 1. Protection against not rec-
ognizing the subpopulations (and using the wrong allele frequen-
cies) is provided using Equation 1. It is conservative, in the sense
of using an upper bound for this variance, to set / = h so that
Varð~puÞ ¼ pð1� pÞ½hþ ð1� hÞ=n�. This bound does not depend
on how many alleles are sampled from each subpopulation.

Software

A computer program has been written to calculate the likelihood
ratio, and its confidence interval. DNAMIX was originally written
by Dr. John Storey and was updated to include the population struc-
ture calculations put forth by Curran et al. (A1). The current version,
DNAMIX-3, has source code that is available and may be freely
modified for research purposes. It is written in Java, so can be run on
any operating system with Java installed. The program is available at
http://www.biostat.washington.edu/~bsweir and is free to the public.

The formula used in DNAMIX-3 is slightly altered from that
given by Curran et al. (A1): all allelic probabilities that are less
than h are replaced by the value of h. This is to allow the calcula-
tion of LR for evidence profiles that contain alleles not seen in the
database.
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